New Ostrowski type inequalities for harmonically convex functions
نویسندگان
چکیده
منابع مشابه
Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
We establish some estimates of the right-hand side of Hermite-Hadamard type inequalities for functions whose derivatives absolute values are harmonically s-convex. Several Hermite-Hadamard type inequalities for products of two harmonically s-convex functions are also considered.
متن کاملFejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
The author introduces the concept of harmonically convex functions and establishes some Hermite-Hadamard type inequalities of these classes of functions.
متن کاملFejér Type Inequalities for Harmonically-convex Functions with Applications
In this paper, a new weighted identity involving harmonically symmetric functions and differentiable functions is established. By using the notion of harmonic symmetricity, harmonic convexity and some auxiliary results, some new Fejér type integral inequalities are presented. Applications to special means of positive real numbers are given as well.
متن کاملOstrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملNEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
In this paper, using the identity proved [43]in for fractional integrals, some new Ostrowski type inequalities for Riemann-Liouville fractional integrals of functions of two variables are established. The established results in this paper generalize those results proved in [43].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Trends in Mathematical Science
سال: 2018
ISSN: 2147-5520
DOI: 10.20852/ntmsci.2018.260